
 1

Abstract—Current document contains the proposal of a

solution that will allow building a generic real time collaboration
framework. It is proposed that this framework uses a centralized
architecture because it will allow using a central instance to solve
all operation avoiding too many heavy and time consuming
negotiation among multiple peers. A Central Server and a Client
Library are proposed to be developed and will form the proposed
framework. Central Server will be responsible to receive, resolve,
persist and broadcast all operations made by users sharing a
given resource. The modules that will form central server are
specified attributing to each one the main responsibilities to be
addressed. The structure of the document that will represent the
shared resource is also specified in order to describe how
operations will be treated, resolved and persisted. Operational
Transformation (OT) will be used to apply all changes to the
document. The version of the OT to be used will be Google Wave
OT mainly because it is open source and was subjected to a heavy
use having been the core of Google Wave. The Client library that
completes the framework is to be used by third party applications
in order to interact with Central Server. Third party applications
will import this library and use its features to add collaboration
featured to their implementations. Client library will be
responsible to handle the communication and possible local and
remote conflict resolutions sent and received from the server. The
proposed framework was subject of an implementation using
Java EE6 and GWT to build Central Server and Client library.
Besides building the framework, a third party web solution was
built in order to check if the use of the framework would indeed
seamlessly allow adding collaboration features. The use of the
framework was a success having proved that the proposed
solution indeed works in a real case scenario. Possible future
implementations are also presented in order to add even more
value to the proposed framework.

I. INTRODUCTION
With the constant and rapid growth of information
systems both in terms of technology and infrastructures,
virtual connections among worldwide users can now be

established, providing rich and high quality virtual
environments. Users demand for these real time collaborative
environments is rapidly growing in order to be able to work
collaboratively and produce content or exchange ideas without
physical restrictions. However, the implementation of these
features is both complex and time consuming, which implies
that the transformation of a product that is designed for single
use into a product that allows multiple users to work on the
same resource at the same time using an internet connection is,

at most cases, too expensive and thus unaffordable. The
framework proposed at this document aims to turn the
transformation of a single user product into a real time multi
user collaborative product not only affordable but also simple.

Implementing and providing a framework able to support
multiple applications with different demands and business
logics brings challenges that must be taken into account at a
design level. One of the first and main concerns is the fear of
building a framework so generic that does not respond to the
needs of any application without some tweaks or
modifications. The proposed solution will take all the different
design and implementation problems into account, specifying
what concerns should be considered and presenting a strategy
to solve them.

II. PROPOSED SOLUTION
The current section will explain possible problems and

solutions regarding the implementation of a generic
framework that can be used to enable collaboration features to
a wide spectrum of applications. It is expected that this
framework can be used and re-used by multiple applications
discarding constrains associated with each application’s
business logic. The Framework will be responsible for
managing the connection between users interacting at a given
resource, resolving, broadcasting and persisting all the
operations made by each user. Third party applications that
use the framework will only have to handle the operations
made by local and remote users, updating the correspondent
interface with the action took by either remote or local users.
Third party applications will not have to handle possible
conflicts resulting on the multiple edition of the same resource
at the same time. Only persisted and conflict free operations
will be passed to the third party applications.

By allowing applications to only focus on the logic

associated with the transformation of an operation to an
interface update, it is avoided the implementation of complex
connection and conflict resolution management systems.

The current document does not contain the implementation

of this framework. It contains however a detailed description
of a proposal to build this framework, justifying each one of
the choices being proposed both at a design and
implementation level.

Building a Generic Real Time Collaboration
Framework

Bruno Silva, Ricardo Preto
Ubiwhere

W

 2

A. Peer To Peer or Centralized Architecture
Before starting to design the envisaged solution, a study

was conducted in order to understand which one of the
alternatives would best suit the framework. Both of them have
strengths and weaknesses and the choice of which one to
embrace will determine indefinitely and deeply the
framework’s behavior.

A P2P approach would allow the framework to not depend
on the availability of a central service. The need for a central
service to resolve and persist all users’ operations involves the
maintenance of an infrastructure that can handle multiple
requests at the same time, keeping response time low. These
costs must be taken into consideration because it is expected
that the central service will handle multiple operations from
multiple users in a multiple applications’ context. Using a P2P
approach would discard the need of a central service, thus
reducing considerably the costs associated with the solution. It
would also allow peers to quickly connect and collaborate
without having to rely on the response time and availability of
a centralized service. However, as it was previously stated,
the use of P2P has also some constraints that must be taken
into consideration. By using a P2P approach, clients would
have to resolve all conflicts among peers, which entails some
constrains that must be deeply analyzed. This scenario may
not pose a constraint and even work great better than with a
central service implementation for a low number of users.
Nevertheless, if dozens of users start to collaborate on the
same resource at the same time, all operations would have to
be received, transformed and re-sended among all peers. If
conflicts occur the cost of solving them would start to be
notable by the final user since performance would greatly
decrease. This is due to the fact that, without a central service
resolving conflicts and having the final word on this
resolution, negotiation would have to be made among peers in
order to all of them agree on the final state of the resource
after all operations are applied. This results on further
communications among peers and further checks and
processing on each one of the alternatives proposed by each
peer.

The implementation of a solution designed with a
centralized architecture allows the existence of a central
service that is responsible to solve all the conflicts. This
implementation avoids having multiple peers resolving the
same conflicts and possibly generating further conflicts to be
resolved. By having a unique entity solving conflicts, the final
word/version is always the version persisted at the central
point. Having a central point also allows persisting all
information, enabling clients to disconnect and re-connect at a
future point resuming all the work made while they were
offline. If more than one client is sharing a given resource, if a
client disconnects and posteriorly reconnects he/she will
receive all the changes made by the other users while he/she is
offline.

After considering the pros and cons previously stated, the
following point were though to be essential:

• Using a central service to solve all operation conflicts
• Recover and receive all other clients’ editions on the

shared resource on reconnect without depending on
the availability of other peers

Both points are associated with a centralized architecture

and so this approach will be used to design the proposed
solution.

B. General View
Just as previously stated, the proposed framework will use a

Centralized Architecture approach. The following image
displayed a general view of the proposed solution.

As can be seen in the previous figure it is proposed that the
Client and Central Server modules compose the framework.
Central Server will be a standalone service allowing multiple
applications to interact with it using the Client library. The
connection will be established using sockets that will provide
a bidirectional channel between Central Server and Client.

1) Central Server

The first and main module that will be needed in order to
build the proposed solution will be a central server to resolve
all concurrency. This will be an independent standalone
service that will allow multiple clients from multiple
applications to interact with it, solving and storing all received
operations, broadcasting and returning the result to all
connected client’s sharing a given resource. In order to
connect with central service, clients will have to establish a
valid socket connection with the central server in order to
open a bi-directional communication channel. Central Server’s
main features will be:

• Provide a set of features that allow to concurrently
edit a resource by multiple users

• Persist all operations made by all users to a given
resource

• Solve all conflicts that result by the application of
multiple operations to the same resource at the same
time

• Control the access to the resources

Figure 1 - General View

 3

• Provide a set of document management related
features

All these features must allow the implementation of a real
time collaboration framework to different applications without
having to make any adjustments. Previous features are
presented at Figure1 being contemplated in the sub-modules
present at Central Server.

The first thing that must be taken into consideration is how
a given resource will be identified. It is proposed that the
responsibility of the definition of this id is held by the central
server in order generate a unique identifier each time an
application creates a new shared resource. A set of features
associated with document management will have to be
provided by the central server enabling third party application
to not have to implement any of these features. These features
will be agglomerated by Document Management sub-module
and will contain:

• Create shared resource
• Delete shared resource
• Edit title and description of the resource

Permission management will always have to be made by the

central server in order to verify every time a new share request
is received if the application/user has the permission to see
and edit the targeted resource. The following set of features
are proposed for the sub-module Permission Management:

• Register new user
• Recover password
• Login
• Logout
• Add user to resource (Allows target user to see and

edit shared resource)
• Remove user from resource

As previously stated, Central Server will have to handle all

operations made by users to the resource. In order to do so, it
is required a specification of the generic resource structure and
supported operations. The proposed structure resembles the
HTML structure of a web page containing elements that can
include other elements or text elements. At the top of the
resource persistence document, the parent element will be
placed and this element will contain as attributes documentId
and resourceDescription. These attributes will not be
concurrently edited, being only defined through document
management features. This element will have the tag name
“ResourceElement” and just like an html element will have a
start and end tag. Bellows there is an example of the final
result of the creation of an empty document:

<ResourceElement documentId=”uniqueId1”
resourceDescription=”ElementDeTeste”/>

This element will contain all other elements to be added to
the resource. In order to not restrict the use of the framework

to any type of application the following elements are proposed
to be possible to be added as children of the parent element:

• ResourceElement

Allows adding an element that has attributes that
resembles attributes of the parent top element. This
element will be easily identified at the document by
providing the documentId. Further attributes can
however be added to this element. Furthermore, it
will be possible to return the content of this “sub-
resource” allowing creating collaborative resources
within collaborative resources. This element will also
allow other elements to be added as children
containing no restrictions when comparing to the
resource parent element. The tag of this element will
be “ResourceElement”.

• ContentElement

This element will allow adding any attribute not
containing any attribute by default. It will also allow
other elements to be added as children. The tag of
this element is not restricted and so can have any
value that will be defined on element creation.

• TextElement

This element will allow adding any attribute not
containing any attribute by default. The content of the
element will be a text value. Operations of text
append and text remove will be allowed in order to
edit the content of this element. The tag of this
element is not restricted and so can have any value
that will be defined on element creation.

An example of a resource document that can be used by a

real time text edition application is presented bellow:

<Resource documentId=”uniqueId1”
resourceDescription=”ElementDeTeste”>
<user1 caretPosition=”10”/>
 <user2 caretPositon=15/>

<user3 caretPositon=11/>
 <Paragraph fontSize=”21” fontStyle=”Arial” fontColor=”Blue”
fontWeight=”Bold”>
 Title of the document being currently edited
 </Paragraph>

<Paragraph fontSize=”14” fontStyle=”Arial” fontColor=”Black”
fontWeight=”Bold”>

Text of the first paragraph being concurrently edited
 <Paragraph fontSize=”14” fontStyle=”Arial” fontColor=”Red”
fontWeight=”Bold”>
 <line>A second paragrapgh with a different style</line><line
fontColor=”green” >that even changes style in the middle of the
line</line>

</Paragraph>
</Resource>

 4

Another example of the resource document of an
application that allows to two players play chess online:

<Resource documentId=”uniqueId1” resourceDescription=”chess
game”>
 <Player1ActivePieces>
 <King positionX=”5” positionY=”1”/>
 <Pawn1 positionX=”5” positionY=”3”/>
 <Pawn2 positionX=”8” positionY=”3”/>

</Player1ActivePieces>
<Player2ActivePieces>

<King positionX=”2” positionY=”7”/>
<Knight1 positionX=”1” positionY=”8”/>

 <Bishop2 positionX=”4” position=”7”/>
</Player2ActivePieces>
<Player1LostPieces>
 <Pawn3/>

<Pawn4/>
<Pawn5/>
<Pawn6/>

 <Pawn7/>
 <Pawn8/>
 <Knight1/>
 <Knight2/>
 <Queen/>
 <Rook1/>
 <Rook2/>
 <Bishop1/>
 <Bishop2/>
</Player1LostPieces>
<Player2LostPieces>

<Pawn1/>
<Pawn2/>
<Pawn3/>
<Pawn4/>
<Pawn5/>
<Pawn6/>

 <Pawn7/>
 <Pawn8/>
 <Knight2/>
 <Queen/>
 <Rook1/>
 <Rook2/>
 <Bishop1/>
</Player2LostPieces>

</Resource>

As it can be seen by the two previous examples, the
framework supports multiple applications with different
business logics and purposes. More examples could be
presented but the generic features are well displayed from the
previous two examples. In order to concurrently manipulate a
document with the previously presented structure, the
following features are proposed:

• Add ResourceElement
• Edit ResourceElement description
• Remove ResourceElement
• Return ResourceElement state
• Add ContentElement
• Remove ContentElement
• Add TextElement
• Remove TextElement

• Add text to TextElement
• Remove text from TextElement
• Add attribute to element
• Remove attribute from element
• Edit attribute of element

The implementation of all these features will have to take

into consideration possible conflicts that result from the
manipulation of the same objects by multiple users. Possible
troubles and proposed implementation will be detailed bellow
in Concurrency Control subsection. All possible actions of
third party application will have to be translated using these
features that will be provided by the Client library still to be
presented.

2) Client

It is referred previously that the proposed framework will
allow to effortless add collaboration features to any
application without the need of further adjustments. Besides
this, third party applications are supposed to not have to
handle the communication with central server neither resolve
concurrency conflicts that are generated from local and remote
operations being applied to the same resource/element at the
same time.

To make sure the previous statement is true, client will have

to be responsible for handling the communication with the
central server and translating user actions to the pre-defined
resource actions supported by the server. These concerns are
to be addressed by the modules Connection Management and
Resource Edition displayed at the Figure 1.

Connection Management is responsible to connect,
disconnect and manage the connection with central server. It
will provide features that will enable third party applications
to login, logout, register new users and recover user
passwords. Besides this, it will implement an important
feature that will allow user to produce work while offline.
Despite the fact that nowadays Internet connections tend to be
quick and stable, it is also inevitable that in some cases users
experience Internet connection failures. This module will
provide an important feature that will enable users to keep
editing the shared resource while offline, being those changes
send to the central server when the connection is reestablished.
The Client library will notify the third party application that
changes are not being stored at the central server but will
allow to continue receiving operation and by doing so will not
block user’s operations. When connection is reestablished this
module will send all pending operations, being those
operations resolved and persisted by the central server. Central
Server will then return the operations’ result as well as all
pending operations from other users made while the user was
offline.

Resource Edition module will be responsible for providing
all the features regarding resource concurrent edition available
at the central server. It will be responsible to receive users´
operations and construct the correspondent valid operation to
send it to the Connection Management module that will send it

 5

to the server. It is intended that the third party application does
not have to implement any operation conflict resolution
feature, being only notified of other user’s operations and
conflict resolution operations applied to local operations. In
order to fully implement these features and provide a truly
black box service, Client module cannot be a simple proxy
that sends and receives operations to and from the central
server. If this approach were to be implemented, in case the
connection with central server fails, third party user
application interface would have to be blocked waiting for
connection to be re-established. Besides this, if connection
was slow or central server response took a perceptively time to
respond, user would experience a considerable delay when
waiting for local operations to be sent, resolved, persisted and
returned. Because of this it is proposed that the client also has
a local resource state that is updated using the same conflict
resolution algorithm present at the central server. Both local
and remote operations will be applied to the local resource
document. Client will have a version of the shared resource on
which will apply local and remote operations prior to send
local changes or locally notify remote changes. This
implementation will allow saving time of central server
solving conflicts that can be locally solved. If multiple remote
operation are received from central server and at the same
time a local operations is applied, this module will apply the
same conflict resolution algorithm available at the central
server to infer the final state resulting from the application of
both remote and local operations. Only one operation will be
sent to the central server that will hopefully (the normal
scenario) be a conflict free operation that will take into
consideration both remote and local operations. By doing this,
it avoids central server to have to solve a conflict needing only
to persist a conflict free operation. When considering
scenarios with many users, the fact that local clients can send
conflict free operations is a huge benefit for the central server.
It is however to note that Central Server version will always
be final and so, if a conflict emerges on the Client’s version
when comparing with the Central Serve version, it will be the
Client’s version that will have to adapted in order to reach
Central Server’s version.

It is intended that the Client is to be provided as an external
library to be added to any third party application. Third party
application will use all public features provided by this lib to
interact with central server. In order for the Client library to
interact and notify the third party application, an interface
implementation will have to be provided by the third party
application implementing all notification methods that will be
used by the Client library. Despite the fact that it is intended
that the final framework is generic allowing that any
application can use its features, the proposed implementation
poses a restriction. Both third party application and the
developed Client library need to be compatible. Despite the
fact that this may restrict the use of the client in some
applications, it is also true that if the client library is
incompatible with a targeted application’s technology, a new
version of the client library can be developed without having
to change the central server service.

As it was previously stated, client will implement the same
behavior of the central server regarding operation conflict
solving. Implementation of these feature is analyzed at the
subsections Concurrency Control available bellow.

C. Concurrency Control
Concurrency control will allow both client and server to

solve any conflict regarding the sharing of a given resource by
multiple users. In order to implement all the real time
collaboration features Operational Transformation (OT)
implementation will be used. The main reason to use OT as
the concurrency control framework is the widely research
already made and available to all (this theoretical framework
is being actively researched for more than 10 years) and the
fact that is widely used by many applications (SubEthaEdit,
EtherPad, Google Docs, Mockinbird, CoPowerPoint, CoMaya,
Apache Wave) that already provide a real time virtual
environment to multiple users. The widely use of OTs among
these solutions proves not only that OTs algorithms are
reliable but also that they can handle a heavy load of
operations made by multiple users editing the same resource.

In order to use OT, all central server and client resource
edition features will have to transform each action to an OT
operation that will then be applied to the shared resource. Just
as previously said, there are innumerous OT implementations
already available that can be used. In order to build the
framework being targeted at the current document, Google
Wave OT implementation is proposed. The main reason for
choosing this implementation is the fact that Google Wave OT
was the core of Google Wave having been subjected to a
considerable higher heavy load than other available
implementations. Furthermore, the implementation is not only
open source and available to all but is also being maintained
by the Apache Foundation under the project Apache Wave.
Apache Wave Foundation has currently an active community
working on Apache Wave that is maintaining Apache Wave
and is open to help in any doubt regarding the use of Apache
Wave and the implementation of Google Wave OT algorithm.
If these reasons were not enough, Google Wave OT also
provides important features that can be seamlessly added to
central server. Listed bellow are the features though to be
relevant to the proposing framework and that are also in favor
of choosing Google Wave OT:

• Undo/Redo features. Google Wave OT
implementation already has this feature embed

• Composition. Google Wave OT implementation
allows taking two or more operations and merging it
together into one single operation. This will allow
client and server implementations to avoid sending
multiple operations when only one operation can be
sent to all connected clients or server.

The implementation of Google Wave OT will have to

follow the same methodology both in client and server. The
proposed resource structure is completely compatible with
Google Wave OT algorithm and so no adaptions will need to
be made. Current document will not describe neither the basic

 6

theory of OT neither the changes proposed by Google Wave
OT because this information is available at multiple sources
that deeply specify and document each approach.

D. Final Considerations
With all previous information, and in order to start

implementing the framework, only technologies need to be
defined to start working. This however will not be specified
because by defining both central server and client technologies
we are adding a severe restriction to the framework
implementation and future use. The selected technologies will
have to take into consideration the know-how of the
developing team, the targeted usage scenarios, the targeted
infrastructures to place the central server, among other
possible reasons. Besides this, all previous specification does
not account any restrictions regarding technology choices and
so this restriction will not be placed by risking proposing a
given language/technology.

E. Building the Solution
After specifying the proposed framework, and in order to

analyze if what was being proposed really delivered what was
intended, a framework and a third-party application were
developed.

1) Framework

The developed framework used all what was previously
defined in its implementation. By following all what was
previously specified a server instance was developed using
Java EE 6 that allows clients to connect using a socket
connection. It receives, resolves and persists all operations
made to a given resource by authenticated users. Google Wave
OT algorithm was added to the server and it is used to apply
and resolve all received operations.

Client library of the framework was developed using

Google Web Toolkit. GWT is an open source framework that
allows creating and maintaining a Javascript web application
using Java. By using GWT it was possible to seamlessly port
all Google Wave OT algorithm from central server to the
Client library.

These choices should not be taken as restrictions to

implement the proposed framework. These technologies were
only used because development team has high experience in
using both Java and GWT.

2) Third Party Application

In order to use the developed framework a third party
application was developed on which collaboration features
were to be added. Just like previously said, it was expected
that the developed framework was able to add any to
application real time collaboration features. Many applications
could be developed but development team felt that a real time
collaborative whiteboard would be the perfect test to the
framework. This choice was mainly due to the heavy load of
operations that the framework would have to handle when
multiple users started drawing lines on the whiteboard.

The final product is a web solution that uses GWT and
provides a whiteboard allowing users to edit it’s content in
real time at the same time. Users can create new documents
and invite other users to a given document allowing them to
edit it’s content. In order to provide a collaborative whiteboard
a HTML5 canvas is used allowing users do draw using mouse
or touch events. An adaptive design was implemented being
the solution prepared to be used by smartphones, tablets,
desktops and smart TVs adapting it’s layout and input events
to the target device. Features of drawing a free line, remove a
line and change color were added to the solution in order to
interact with the canvas.

Before using the developed framework, the solution

provided a standalone whiteboard on which a user could draw
editing its content. After reaching this step, the solution
became a perfect real case scenario to use the collaboration
framework. It was expected that by using the client, only
implementation regarding the update of the canvas with local
and remote operations would have to be handled. By using the
framework, this was indeed what happened. Client library was
added to the project allowing easily creating a connection with
the server. Client’s Document management features are used
to create and share documents among users. All local
operations on the canvas that are retrieved by touch and mouse
events, are passed to the Client library that is responsible to
convert into operations and persist them in the local copy of
the shared document. After being locally applied (without
having confirmation from the server at this point) Client
library notifies third party application of the changes to be
added to the whiteboard (Canvas). Client is then the only
responsible to send these operations to the server and manage
possible conflicts. All messages received from the server
(being local operations resolution/acknowledge or remote
operations) are processed also by the Client library. Third
party application is only notified when an operation is
correctly locally persisted notifying if an element was
created/edited/removed. Third party application only has to
update user interface taking into consideration the information
received.

 In order to implement the real time collaboration features,
only one type of element (TextElement) is being currently
used. Bellow is the example of a document that represents a
shared resource containing two lines each one containing three
points:

Figure 2 - Coolled whiteboard page

 7

<Resource documentId=”w+efe1b6b524c8b4b41e060f79d6e645f5A”
resourceDescription=”WhiteboardTest”>
 <Stroke color=”#FF9966”>
 1,1;2,2,2,1;2,2
 </Stroke>
 <Stroke color=”#FF1136”>
 122,122;122,122;123,122;123,124
 </Stroke>
</Resource>

As can be seen, TextElements are used to represent each
one of the lines. A line is represented by an element with a tag
name “Stroke”. The content of the element will contain the
points that compose the line separated by “,” and separated by
“;” from each other. When users are creating a line, points are
appended to the correspondent Stroke element using an OT
transformation that appends the new points to the end of the
actual content of the element. The attribute color of each
Stroke element will be used to persist the color of the stroke.
In order to locally create a line, third party application will
only have to use Client library function that allows creating a
TextElement defining the tag name as “Stroke” and adding the
current color as an attribute of the element. After this creation,
it will use the function that allows adding content to a
TextElement passing the points as text separated by “,” and
“;”. In order to update whiteboard with remote operations,
third party application will only have to be notified by Client
library that either an element creation or edition with a tag
name stroke was received. If this is true it will process the
correspondent whiteboard update taking into consideration if a
new line is to be created or points should be appended to an
existing line. It uses the value of the attribute color to know
which color will be used to represent the line and the content
of the stroke element to know the line’s points to be added to
the canvas. Third party application does not have to handle
any conflict resolution or connection management events.
Client implements all these features informing only the third
party application when a new event was persisted/received.

F. Future Work
The main objective of the proposed framework was to allow

real time collaboration features to any application regardless
application’s business logic. Although specification and
posterior implementation were a success, there is still work to
be done in order to embed important features to the framework
adding even more value to the final solution. The proposed
framework has the potential to be provided as a SaaS. In order
to do so, some changes would have to be made to allow
controlling and distributing central server resources among the
different clients. The first changes would have to be in the
document creation and system management modules. Client
registration and user management should be associated with a
given application and by so a module allowing applications to
be registered and managed would have to be created.
Furthermore, the traffic associated with each application
would have to be monitored in order to be charged. A module

responsible to do this would also have to be specified and
implemented.

The developed whiteboard solution has also the potential to

be worked in order to provide the full set of features
associated with the scenario of multiple users editing a canvas.
Shapes and textboxes for instance could easily be added being
both changes supported by the framework though the use of
ContentElement and ResourceElement.

G. Conclusions
The proposed framework specification allowed building a

generic framework that allows implementing collaboration
features to any application without modification to the
framework. The degree of specification present at the
document proved to be a valid approach on building the
proposed framework without needing any further specification
and changes on building the final solution.

The integration of the framework in a real case scenario was

a success being the framework able to handle all the targeted
features. The main work developed at the whiteboard solution
was centered on the implementation of the solution’s desired
features without having to implement any feature regarding
conflict or communication management among peers editing
the same resource. It is therefore safe to say that the
framework did meet all the initial expectations and if in a near
future real time collaboration features are to be added to a
given application, the use of the specified and developed
framework will be almost certain.

REFERENCES

[1] C. Cook, N. Churcher, “A user evaluation of synchronous collaborative

software engineering tools”, 2005
[2] Jae young Bang, Daniel Popescu, George Edwards, Nenad Medvidovic,

Naveen Kulkarni, Girish M. Rama, Srinivas Padmanabhuni, “A Highly
Extensible Collaborative Software Modeling Framework”, 2010

[3] M. Cataldo, Al. Camel, “A tool for collaborative distributed software
design”, 2009

[4] David Wang, Alex Mah, Soren Lassen, “Google Wave Operation
Transformation”, July 2010

[5] R. Hedge, P. Dewan, “Connecting programming environments to
support ad-hoc collaboration”, 2008

[6] Carl Cook, Neville Churcher, “Modelling and Measuring Collaborative
Software Engineering”, 2005

[7] Michael Reeves, Jihan Zhu, “Moomba A Collaborative Environment for
Supporting Distributed Extreme Programming in Global Software
Development”, 2004

[8] C. Cook, N. Churcher, “Towards Synchronous Collaborative Software
Engineering”, 2004

[9] N. Graham, H. Stewart, A. Ryman, R. Kopaee, R. Rasouli, “A World-
Wide-Wb Architecture for Collaborative Design,” 1999

[10] J. Hill, C. Gutwin, “Awareness Support in a Groupware Widget
Toolkit”, 2003

[11] David A. Nichols, Pavel Curtis, Michael Dixon, John Lamping, “high-
Latency, Low-Bandwith Windowing in the Jupiter Collaboration
System”

[12] James Begole, Mary Beth Rosson, Clifford A. Shaffer, “Flexible
collaboration transparency: supporting worker independence in
replicated application-sharing systems”, 1999

[13] C. A. Ellis, S. J. Gibbs, “Concurrency control in groupware systems”,
1989

 8

[14] Du Li, Rui Li, “Transparent sharing and interoperation of heterogeneous
single-user applications”, 2002

[15] Chengzheng Sun, Clarence Ellis, “Operational Transformation in Real-
Time Group Editors: Issues, Algorithms, and Achievements”

[16] Gérald Oster, Pascal Urso, Pascal Molli, Abdessamad Imine, “Real time
group editors without Operational transformation”, 2005

[17] Clarence Leung, “Operational transformation in cooperative software
systems”, 2013

[18] Marcos Bento, Nuno Preguica, “Operational transformation based
reconciliation in the FEW File System”, 2006

